
COMP3161/COMP9164 Supplementary Lecture Notes

Semantics

Gabriele Keller, Liam O’Connor, Johannes Åman Pohjola

September 26, 2024

After discussing syntactic properties of languages, let us now look at the semantics of program-
ming languages and how they can be specified using inference rules. In a programming language,
we distinguish between the static semantics and the dynamic semantics.

1 Static Semantics

Static semantics includes all those semantic properties which can be checked at compile time.
What these properties actually are, and to which extend a compiler is able to extract information
about them depends on the programming language. In general, they are either related to the
scoping or the typing rules of a language. In some languages, the type of an expression or the
scope of a variable can only be determined during runtime, so this is not part of the language’s
static semantics. We will look at both dynamic typing and dynamic scoping later on in the course.

In our language of arithmetic expressions, typing rules are pretty pointless, since we only have
a single type, and every expression which is syntactically correct is also type correct. So the only
interesting static semantic feature of this language is the scoping of the variables. The expression

let

x = x + 1

in

x * x

is syntactically correct, but not semantically, since x in the subexpression x + 1 is not bound to
a value. We would like to have a set of inference rules which define a predicate ok, such that e ok
holds when e contains no free variables. As we know from the definition of the abstract syntax,
the expression can either be a number, a variable, an addition, a multiplication, or a let-binding.
Therefore, we need an inference rule for each of these cases stating under which conditions the
expression is ok. For expressions representing simple numbers, it is straight-forward, as they never
contain a free variable, and we might write:

(Num int) ok

However, variables are more difficult, so we leave it for later, and look at addition instead. A term
(Plus e1 e2) is ok if both e1 and e2 are ok:

t1 ok t2 ok

(Plus t1 t2) ok

Obviously, multiplication works in exactly the same way. Now, let’s look at let-expressions: the
term (Let e1 x.e2) is ok if e1 is ok. What about e2, though? It may contain free occurrences of
x. So, to determine is e2 is ok, we have to somehow remember that x is bound in e2. It seems it

1

is not sufficient to define ok depending solely on the expression, but we need a way to keep track
of the variables which are bound in the expression. This can be done by adding a context Γ, a set
of assumptions, to our judgment, and write

Γ ⊢ e ok

to mean e is ok under the assumptions in the context Γ. In this case, Γ will consist of assumptions
written x bound , that indicates that x is in scope.

We extend the rules for numbers, addition and multiplication to include the context Γ. They
are otherwise unchanged.

Γ ⊢ (Num int) ok

Γ ⊢ t1 ok Γ ⊢ t2 ok

Γ ⊢ (Plus t1 t2) ok

Γ ⊢ t1 ok Γ ⊢ t2 ok

Γ ⊢ (Times t1 t2) ok

We can now handle expressions consisting of a single variable: the expression is ok only if the
variable is in the environment. In case of a let-binding, we first check the right-hand side of the
binding with the old environment, and then insert the new variable into the environment and
check the body expression:

x bound ∈ Γ

Γ ⊢ x ok

Γ ⊢ t1 ok Γ, x bound ⊢ t2 ok

Γ ⊢ (Let t1 x.t2) ok

Note that sets of assumptions are traditionally written without the {} brackets. In the same
vein, notation S, x here can be read as shorthand for the set S ∪ {x}.

Initially, the environment is empty, and an arithmetic expression is ok if and only if we can
derive ⊢ e ok (with an empty context, i.e. syntactic sugar for ∅ ⊢ e ok) using the rules listed
above.

2 Dynamic Semantics

The semantics of a programming language connects the syntax of the language to some kind of
computational model. There are different techniques to describe the semantics of programming
languages: axiomatic semantics, denotational, and operational semantics. In this course, we only
use operational semantics, that is, we specify how programs are being executed.

Small Step Operational Semantics, also called Structured Operational Semantic (SOS) or Tran-
sitional Semantics achieves this by defining an abstract machine and step-by-step execution of a
program on this abstract machine. Big Step, Evaluation or Natural Semantics specifies the se-
mantics of a program in terms of the results of the complete evaluation of subprograms.

2.1 Small Step or Structural Operational Semantics(SOS)

Let us start by giving the SOS for the arithmetic expression example. We first have to define a
transition system, which can be viewed as an abstract machine together with a set of rules defining
how the state of the machine changes during the evaluation of a program. To be more precise, we
need to define:

� a set of states S on an abstract computing device

� a set of initial states I ⊆ S

� a set of final states F ⊆ S

� a relation 7→ ∈ S × S describing the effect of a single evaluation step on state s

2

A machine can start up in any of the initial states, and the execution terminates if the machine is
in a final state. That is, for sf ∈ F , there is no s ∈ S such that sf 7→ s.

According to this notation s1 7→ s2 can be read as state s1 evaluates to s2 in a single execution
step. A execution sequence or trace is simply a sequence of states s0, s1, s2, . . . , sn where s0 ∈ I
and s0 7→ s1 7→ s2 7→ . . . 7→ sn

We say that a execution sequence is maximal if there is no sn+1 such that sn 7→ sn+1, and
complete if sn is a final state.

Note that, although every complete execution sequence is maximal, not every maximal sequence
is complete, as there may be states for which no follow-up state exist, but which are not in F .
Such a state is called a stuck state, and intuitively corresponds to run-time errors in a program.
Obviously, stuck states should be avoided, and transition systems defined in such a way that stuck
states cannot be reached from any initial state.

How should S, I, F and 7→ be defined for our arithmetic expressions? If we evaluate arithmetic
expressions, we simplify them stepwise, until we end up with the result. We can define our
transition system similarly.

The Set of States S we include all syntactically correct arithmetic expressions.

S = {e | ∃Γ.Γ ⊢ e ok}

The Set of Initial States I then should be all expressions which can be evaluated to a integer
value. These are all syntactically correct expressions without free variables:

I = {e |⊢ e ok}

The Set of Final States F as every expression should be evaluated to a number eventually,
we define the set of final states

F = {(Num int)}

Operations The next step is to determine the operations of the abstract machine. For all
the arithmetic operations like addition and multiplication, we need the corresponding “machine”
operation. To evaluate let-bindings, we also have to be able to replace variables in an expression
by a value, so we add substitution of variables to the set of operations our abstract machine
can perform. Substitution is a reasonably complex operation requiring the traversal of the whole
expression, so by assuming substitution as an operation we are pretty far from a realistic machine.
We will later look at alternative definitions of abstract machines which don’t use substitution.

The 7→-Relation Finally, we do have to define the 7→-relation inductively over the structure.
We do not have to provide any rules for terms of the form (Num n), since they represent final states.
We start with the evaluation of addition. Keep in mind that 7→ only describes a single evaluation
step of the machine. If both arguments of plus are already fully evaluated, we can simply add
the two values using the “machine addition”:

(Plus (Num n) (Num m)) 7→ (Num (n+m))

What should happen if the arguments are not yet fully evaluated? We have to decide which
argument to evaluate first — it does not really matter. So, we start with the leftmost:

e1 7→ e′1
(Plus e1 e2) 7→ (Plus e′1 e2)

This step is repeated until the first argument is fully evaluated, at which point be continue with
the second argument:

e2 7→ e′2
(Plus (Num n) e2) 7→ (Plus (Num n) e′2)

3

Multiplication works in exactly the same way:

(Times (Num n) (Num m)) 7→ Num (n ∗m)

e1 7→ e′1
(Times e1 e2) 7→ (Times e′1 e2)

e2 7→ e′2
(Times (Num n) e2) 7→ (Times (Num n) e′2)

Let-bindings are slightly more interesting. Again, we have to decide which order we want to
evaluate the arguments in. If we evaluate the first argument (i.e., the right-hand side of the
binding) first and then replace all occurrences of the variable by this value, we have the following
rules:

e1 7→ e′1
(Let e1 x.e2) 7→ (Let e′1 x.e2)

(Let (Num n) x.e2) 7→ e2[x := (Num n)]

Note that we could have decided to replace the variable immediately with the expression e1 in e2.
If x occurs in e2 multiple times, it means, however, that we copy the expression, and consequently
have to evaluate it more than once.

Example Given the rules listed above, the evaluation of an expression (Let (Plus (Num 5)

(Num 3)) x.(Times x (Num 4))) proceeds as follows:

(Let (Plus (Num 5) (Num 3)) x.(Times x (Num 4)))

7→

(Let (Num 8) x. (Times x (Num 4)))

7→

(Times (Num 8) (Num 4))

7→

(Num 32)

Note that we did not give the derivation for each of the evaluation steps.

More Notation We use the relation s1
⋆7→ s2 to denote that a state s1 evaluates to a state s2

in zero or more steps. In other words, the relation
⋆7→ is the reflexive, transitive closure of 7→.

That is

s
⋆7→ s

s1 7→ s2 s2
⋆7→ s3

s1
⋆7→ s3

Furthermore, we write s1
!7→ s2 to express that s1 fully evaluates in zero or more steps to a state

s2, or more formally,

s
!7→ s′, if s

⋆7→ s′and s′ ∈ F

4

2.2 Big Step Semantics

Let us now look at big step semantics. Similar to the initial states in SOS, we have to define a
set of evaluable expressions E, and a set of values V (corresponding to the final states in SOS).
The values can, but do not have to, be a subset of E. Finally, we define a relation “evaluates to”
⇓ ∈ E × V . Note that in contrast to SOS, the relation does not say anything about the number
of steps the evaluation requires.

Applied to our example, we define

� the set E of evaluable expressions to be: {e | ⊢ e ok}

� the set V of values to be the integers.

To define ⇓, we again have to consider all possible cases for e. This time, we do need rules for
e = (Num(n)):

(Num n) ⇓ n

On the other hand, we only need a single rule for each addition and multiplication. For these
operators, big step semantics does not need to distinguish which of the arguments is evaluated
first, since the two expressions are independent:

e1 ⇓ n1 e2 ⇓ n2

(Plus e1 e2) ⇓ (n1 + n2)

e1 ⇓ n1 e2 ⇓ n2

(Times e1 e2) ⇓ (n1 × n2)

The rules for the let-binding, however, state that e1 has to be evaluated first, because the variable
is replaced by the resulting value, and therefore we have a data dependency:

e1 ⇓ n1 e2[x := (Num n1)] ⇓ n2

(Let e1 x.e2) ⇓ n2

Now consider the example expression used to demonstrate evaluation using the SOS rules. Not
surprisingly, the expression evaluates to the same value using big step semantics. Here is the
derivation:

(Num 5) ⇓ 5 (Num 3) ⇓ 3

(Plus (Num 5) (Num 3)) ⇓ 8

(Num 8) ⇓ 8 (Num 4) ⇓ 4

(Times (Num 8) (Num 4)) ⇓ 32

(Let (Plus (Num 5) (Num 3)) x.(Times x (Num 4))) ⇓ 32

The concept of an evaluation sequence does not make sense for big step semantics, as expressions
evaluate in a single “step”.

2.3 Denotational semantics

Denotational semantics, which is not emphasised at all in this course, is the compositional con-
struction of a mathematical object for each form of syntax. It is typically presented as a function
J·K from a piece of syntax to a mathematical object representing its meaning (its denotation).

For example, here is a denotational semantics which maps arithmetic expressions (and an
environment E : String 7→ Z) to elements of Z.

JNum nK = λE. n
JVar xK = λE. E(x)
JPlus e1 e2K = λE. Je1KE + Je2KE
JTimes e1 e2K = λE. Je1KE × Je2KE
JLet x e1 e2K = λE. Je2K (E[x := Je1KE])

5

What kind of mathematical object your program should denote depends on the programming
language, but also on how much detail you want to capture. For a sequential, imperative program-
ming language, the denotation of a program might be a function from (initial) states to (final)
states. For concurrent programming, the intermediate states are important, so we might add more
detail to our denotations to capture how our program interacts with its environment.

2.4 Comparing SOS and Evaluation Semantics

We gave two different set of rules, both describing in different ways the operational semantics of
the same language. We also showed that, at least for one example expression, both lead to the
same result. How can we prove that the small step and the big step semantics are equivalent the
way we defined it?

This seems to be obvious, but is not so easy to prove!

1. Show that if e ⇓ (Num n) then e
!7→ (Num n)

2. Show that if e
!7→ (Num n) then e ⇓ (Num n)

We can show that ➀ holds by rule induction over the definition of ⇓.
To show that e ⇓ (Num n) implies e

!7→ (Num n) we have to consider the following cases:

1. e = (Numn)

2. e = plus(e1e2) with e1 ⇓ (Numn1) and e2 ⇓ (Numn2), n1 + n2 = n

� I.H.-1: if e1 ⇓ (Num n1) then e1
!7→ (Num n1)

� I.H.-2: if e2 ⇓ (Num n2) then e2
!7→ (Num n2)

3. e = times(e1e2) with e1 ⇓ (Numn1) and e2 ⇓ (Numn2), n1 ∗ n2 = n

� I.H.-1: if e1 ⇓ (Num n1) then e1
!7→ (Num n1)

� I.H.-2: if e2 ⇓ (Num n2) then e2
!7→ (Num n2)

4. e = let(<e1, x .e2) with e1 ⇓ (Numn1) and {(Numn1)/x}e2 ⇓ (Numn)

� I.H.-1: if e1 ⇓ (Num n1) then e1
!7→ (Num n1)

� I.H.-2: if {(Num n1)/x} e2 ⇓ (Num n) then {(Num n1)/x} e2
!7→ (Num n)

1. e = (Numn) e
!7→ (Num n) is trivially true (reflexivity of

!7→)

2. e = plus(e1e2) with e1 ⇓ (Numn1) and e2 ⇓ (Numn2), n1 + n2 = n

� I.H.-1: if e1 ⇓ (Num n1) then e1
!7→ (Num n1)

� I.H.-2: if e2 ⇓ (Num n2) then e2
!7→ (Num n2)

plus (e1 e2)
⋆7→ plus ((Num n1), e2)
⋆7→ plus ((Num n1), num (n2))
7→ (Num n1 + n2)

3. e = times(e1, e2) (as above)

➃ e = let(e1, x .e2) with e1 ⇓ (Numn1) and {(Numn1)/x}e2 ⇓ (Numn)

6

� I.H.-1: if e1 ⇓ (Num n1) then e1
!7→ (Num n1)

� I.H.-2: if {(Num n1)/x} e2 ⇓ (Num n) then {(Num n1)/x} e2
!7→ (Num n)

let (e1, x .e2)
!7→ let (num (n1), x .e2)
7→ (Num n1)/x} e2
!7→ (Num n)

7

